import matplotlib.pyplot as plt
import numpy as np
import math
c = 1
pos = c * 50
neg = 75
def rocgrid():
plt.figure(figsize=(6, 6))
plt.xlim(0, neg)
plt.ylim(0, pos)
plt.xlabel("Negatives")
plt.ylabel("Positives")
plt.xticks([])
plt.yticks([])
plt.gca().set_aspect('equal')
plt.grid(True, which='both', color='gray', linestyle='-', linewidth=0.5)
plt.minorticks_on()
def entropy(P, N):
if P == 0 or N == 0:
return 0
p = P / (P + N)
n = N / (P + N)
return -p * math.log2(p) - n * math.log2(n)
def gini(P, N):
p = P / (P + N)
n = N / (P + N)
return 4 * p * n
def dkm(P, N):
p = P / (P + N)
n = N / (P + N)
return 2 * math.sqrt(p * n)
def minacc(P, N):
p = P / (P + N)
n = N / (P + N)
return min(p, n)
def metric(tp, fp, m):
if tp + fp == 0:
return 0
Pos = pos
Neg = neg
N = Pos + Neg
TP = tp
FP = fp
FN = Pos - TP
TN = Neg - FP
if m == 'accuracy':
return (TP + TN) / N
if m == 'wracc':
return TP / N - (TP + FP) * (TP + FN) / N**2
if m == 'confirmation':
num = (TP + FP) * (FP + TN) / N**2 - FP / N
den = math.sqrt((TP + FP) * (FP + TN) / N**2) - (TP + FP) * (FP + TN) / N**2
return num / den if den != 0 else 0
if m == 'generality':
return (TP + FP) / N
if m == 'precision':
return TP / (TP + FP)
if m == 'laplace-precision':
return (TP + 10) / (TP + FP + 20)
if m == 'f-measure':
return 2 * TP / (2 * TP + FP + FN)
if m == 'g-measure':
return TP / (FP + Pos)
if m == 'precision*recall':
return TP**2 / ((TP + FP) * (TP + FN))
if m == 'avg-precision-recall':
return TP / (2 * (TP + FP)) + TP / (2 * (TP + FN))
if m == 'aucsplit':
return (TP * Neg + Pos * TN) / (2 * Pos * Neg)
if m == 'balanced-aucsplit':
return TP / Pos - FP / Neg
if m == 'chi2':
return ((TP * TN - FP * FN)**2) / ((TP + FP) * (TP + FN) * (FP + TN) * (FN + TN))
if m == 'info-gain':
return entropy(Pos, Neg) - (TP + FP) / N * entropy(TP, FP) - (FN + TN) / N * entropy(FN, TN)
if m == 'gini':
return gini(Pos, Neg) - (TP + FP) / N * gini(TP, FP) - (FN + TN) / N * gini(FN, TN)
if m == 'dkm':
return dkm(Pos, Neg) - (TP + FP) / N * dkm(TP, FP) - (FN + TN) / N * dkm(FN, TN)
if m == 'entropy':
return entropy(TP, FP) / 2
if m == 'giniimp':
return gini(TP, FP)
if m == 'dkmimp':
return dkm(TP, FP)
if m == 'minacc':
return minacc(TP, FP)
def contour1(m, col, lty, tp, fp):
v = metric(tp, fp, m)
col_val = (min(2 - 2 * v, 1), v, 0)
color = (col_val[0], col_val[1], col_val[2])
plt.plot(fp, tp, 'o', color=color, linewidth=3)
if tp == 0 or fp == 0:
plt.plot([0, fp], [0, tp], color=color, linestyle=lty, linewidth=4)
return
x = np.arange(0, fp + 1)
y = np.arange(0, tp + 1)
X, Y = np.meshgrid(x, y)
Z = np.vectorize(lambda tp, fp: metric(tp, fp, m))(Y, X)
plt.contour(X, Y, Z, levels=[v], linewidths=2, colors=[color], linestyles=[lty])
rocgrid()
d = 1
method = 'precision'
colour = 'black'
p = 0
n = 40
plt.arrow(50 - d, 50 - d, n + d - (50 - d), p + d - (50 - d), color='violet', width=0.2, head_width=1.5)
contour1(method, 'red', 'solid', p, n)
contour1(method, colour, 'dotted', 10, 30)
contour1(method, colour, 'dotted', 20, 20)
contour1(method, 'green', 'solid', 20, 0)
contour1(method, colour, 'dotted', 50, 10)
contour1(method, colour, 'dotted', 50, 30)
contour1(method, 'red', 'solid', 0, 20)
contour1(method, colour, 'dotted', 30, 40)
contour1(method, colour, 'dotted', 20, 10)
plt.show()