6.2 Rule List

Rule List right

R figure

Code
c <- 1 
pos <- c*50  
neg <- 50  

rocgrid <- function() {
    plot( c(0,neg), c(0,pos),
         xlim=c(0,neg),ylim=c(0,pos),
         #asp = pos/neg,
         xaxs = "i",yaxs = "i",
         xaxt = 'n', yaxt = 'n',
         type = "n",
         xlab = "Negatives", ylab = "Positives")
    
    grid (nx = neg/10, ny = pos/10, col = gray(0.5))
    
}

metric <- function(tp,fp,m) {
  if (tp+fp == 0) { return(0) }
  else {
    Pos = pos
    Neg = neg
    N = Pos+Neg
    TP = tp
    FP = fp
    FN = Pos-TP
    TN = Neg-FP
    if (m=='accuracy') return( (TP+TN)/N ) 
    if (m=='wracc') return( TP/N - (TP+FP)*(TP+FN)/N^2 ) 
    if (m=='confirmation') return( ((TP+FP)*(FP+TN)/N^2 - FP/N)/(sqrt((TP+FP)*(FP+TN)/N^2) - (TP+FP)*(FP+TN)/N^2) ) 
    if (m=='generality') return( (TP+FP)/N ) 
    if (m=='precision') return( TP/(TP+FP) ) 
    if (m=='laplace-precision') return( (TP+10)/(TP+FP+20) ) 
    if (m=='f-measure') return( 2*TP/(2*TP+FP+FN) ) 
    if (m=='g-measure') return( TP/(FP+Pos) ) 
    if (m=='precision*recall') return( TP^2/((TP+FP)*(TP+FN)) ) 
    if (m=='avg-precision-recall') return( TP/(2*(TP+FP)) + TP/(2*(TP+FN)) ) 
    if (m=='aucsplit') return( (TP*Neg+Pos*TN)/(2*Pos*Neg) ) 
    if (m=='balanced-aucsplit') return( TP/Pos - FP/Neg ) 
    if (m=='chi2') return( (TP*TN - FP*FN)^2 / ((TP+FP)*(TP+FN)*(FP+TN)*(FN+TN)) ) 
    if (m=='info-gain') return( entropy(Pos,Neg) - (TP+FP)/N*entropy(TP,FP) - (FN+TN)/N*entropy(FN,TN) )
    if (m=='gini') return( gini(Pos,Neg) - (TP+FP)/N*gini(TP,FP) - (FN+TN)/N*gini(FN,TN) )
    if (m=='dkm') return( dkm(Pos,Neg) - (TP+FP)/N*dkm(TP,FP) - (FN+TN)/N*dkm(FN,TN) )
    if (m=='entropy') return( entropy(TP,FP)/2 )
    if (m=='giniimp') return( gini(TP,FP) )
    if (m=='dkmimp') return( dkm(TP,FP) )
    if (m=='minacc') return( minacc(TP,FP) )
  }
}

entropy <- function(P,N) {
  p <- P/(P+N)
  n <- N/(P+N)
  if (P==0 || N==0) { return( 0 ) }
  else { return( -p*log2(p) -n*log2(n) ) }
}

gini <- function(P,N) {
  p <- P/(P+N)
  n <- N/(P+N)
  return( 4*p*n )   
}

dkm <- function(P,N) {
  p <- P/(P+N)
  n <- N/(P+N)
  return( 2*sqrt(p*n) ) 
}

minacc <- function(P,N) {
  p <- P/(P+N)
  n <- N/(P+N)
  return( min(p,n) )    
}


save = FALSE

if (save==FALSE) {colour1="red"; colour2="blue"} else {colour1="black"; colour2="black"}

contour1 <- function(m,col,lty,tp,fp) {
    v <- metric(tp,fp,m)
    col=rgb(min(2-2*v,1),v,0)
    points(fp,tp,col=col,type='p',lwd=3)
    if (tp==0 || fp==0) { 
        lines(c(0,fp),c(0,tp),col=col,lty=lty,lwd=4)
        return() 
    }
    x <- seq(0,fp)
    y <- seq(0,tp)
    z <- matrix(nrow=fp+1,ncol=tp+1)
    for (i in x) {
      for (j in y) {
        z[i+1,j+1] = metric(j,i,m)
      }
    }
    contour(x,y,z,level=v,lwd=2,add=TRUE,col=col,lty=lty,labels="")
}

rocgrid()
d = 1
method = 'precision'
colour = 'black'
p =  0; n = 40
arrows(50-d,50-d,n+d,p+d,col='violet',length=0.1,lwd=3)
contour1(method,'red','solid',  p,  n)
NULL
Code
contour1(method,colour,'dotted',10, 30)
contour1(method,colour,'dotted',20, 20)
contour1(method,'green','solid',20,  0)
NULL
Code
contour1(method,colour,'dotted',50, 10)
contour1(method,colour,'dotted',50, 30)
contour1(method,'red','solid', 0, 20)
NULL
Code
contour1(method,colour,'dotted',30, 40)
contour1(method,colour,'dotted',20, 10)

Python figure

Code
import matplotlib.pyplot as plt
import numpy as np
import math

c = 1
pos = c * 50
neg = 75

def rocgrid():
    plt.figure(figsize=(6, 6))
    plt.xlim(0, neg)
    plt.ylim(0, pos)
    plt.xlabel("Negatives")
    plt.ylabel("Positives")
    plt.xticks([])
    plt.yticks([])
    plt.gca().set_aspect('equal')
    plt.grid(True, which='both', color='gray', linestyle='-', linewidth=0.5)
    plt.minorticks_on()

def entropy(P, N):
    if P == 0 or N == 0:
        return 0
    p = P / (P + N)
    n = N / (P + N)
    return -p * math.log2(p) - n * math.log2(n)

def gini(P, N):
    p = P / (P + N)
    n = N / (P + N)
    return 4 * p * n

def dkm(P, N):
    p = P / (P + N)
    n = N / (P + N)
    return 2 * math.sqrt(p * n)

def minacc(P, N):
    p = P / (P + N)
    n = N / (P + N)
    return min(p, n)

def metric(tp, fp, m):
    if tp + fp == 0:
        return 0
    Pos = pos
    Neg = neg
    N = Pos + Neg
    TP = tp
    FP = fp
    FN = Pos - TP
    TN = Neg - FP

    if m == 'accuracy':
        return (TP + TN) / N
    if m == 'wracc':
        return TP / N - (TP + FP) * (TP + FN) / N**2
    if m == 'confirmation':
        num = (TP + FP) * (FP + TN) / N**2 - FP / N
        den = math.sqrt((TP + FP) * (FP + TN) / N**2) - (TP + FP) * (FP + TN) / N**2
        return num / den if den != 0 else 0
    if m == 'generality':
        return (TP + FP) / N
    if m == 'precision':
        return TP / (TP + FP)
    if m == 'laplace-precision':
        return (TP + 10) / (TP + FP + 20)
    if m == 'f-measure':
        return 2 * TP / (2 * TP + FP + FN)
    if m == 'g-measure':
        return TP / (FP + Pos)
    if m == 'precision*recall':
        return TP**2 / ((TP + FP) * (TP + FN))
    if m == 'avg-precision-recall':
        return TP / (2 * (TP + FP)) + TP / (2 * (TP + FN))
    if m == 'aucsplit':
        return (TP * Neg + Pos * TN) / (2 * Pos * Neg)
    if m == 'balanced-aucsplit':
        return TP / Pos - FP / Neg
    if m == 'chi2':
        return ((TP * TN - FP * FN)**2) / ((TP + FP) * (TP + FN) * (FP + TN) * (FN + TN))
    if m == 'info-gain':
        return entropy(Pos, Neg) - (TP + FP) / N * entropy(TP, FP) - (FN + TN) / N * entropy(FN, TN)
    if m == 'gini':
        return gini(Pos, Neg) - (TP + FP) / N * gini(TP, FP) - (FN + TN) / N * gini(FN, TN)
    if m == 'dkm':
        return dkm(Pos, Neg) - (TP + FP) / N * dkm(TP, FP) - (FN + TN) / N * dkm(FN, TN)
    if m == 'entropy':
        return entropy(TP, FP) / 2
    if m == 'giniimp':
        return gini(TP, FP)
    if m == 'dkmimp':
        return dkm(TP, FP)
    if m == 'minacc':
        return minacc(TP, FP)

def contour1(m, col, lty, tp, fp):
    v = metric(tp, fp, m)
    col_val = (min(2 - 2 * v, 1), v, 0)
    color = (col_val[0], col_val[1], col_val[2])
    plt.plot(fp, tp, 'o', color=color, linewidth=3)
    if tp == 0 or fp == 0:
        plt.plot([0, fp], [0, tp], color=color, linestyle=lty, linewidth=4)
        return
    x = np.arange(0, fp + 1)
    y = np.arange(0, tp + 1)
    X, Y = np.meshgrid(x, y)
    Z = np.vectorize(lambda tp, fp: metric(tp, fp, m))(Y, X)
    plt.contour(X, Y, Z, levels=[v], linewidths=2, colors=[color], linestyles=[lty])

rocgrid()
d = 1
method = 'precision'
colour = 'black'
p = 0
n = 40

plt.arrow(50 - d, 50 - d, n + d - (50 - d), p + d - (50 - d), color='violet', width=0.2, head_width=1.5)

contour1(method, 'red', 'solid', p, n)
contour1(method, colour, 'dotted', 10, 30)
contour1(method, colour, 'dotted', 20, 20)
contour1(method, 'green', 'solid', 20, 0)
contour1(method, colour, 'dotted', 50, 10)
contour1(method, colour, 'dotted', 50, 30)
contour1(method, 'red', 'solid', 0, 20)
contour1(method, colour, 'dotted', 30, 40)
contour1(method, colour, 'dotted', 20, 10)

plt.show()

Rule List left

Code
graph TD;
    34["true<br>[5+, 5-]"]
    38["Length=3<br>[2+, 0-]"]:::green
    76["Length=4<br>[1+, 3-]"]
    95["Length=5<br>[2+, 2-]"]
    35["Gills=yes<br>[0+, 4-]"]:::red
    62["Gills=no<br>[5+, 1-]"]
    33["Beak=yes<br>[5+, 3-]"]
    52["Beak=no<br>[0+, 2-]"]:::red
    32["Teeth=many<br>[3+, 4-]"]
    45["Teeth=few<br>[2+, 1-]"]

    34 --> 32
    34 --> 33
    34 --> 35
    34 --> 38
    34 --> 45
    34 --> 52
    34 --> 62
    34 --> 76
    34 --> 95

    classDef red fill:#f04030,stroke:#000,stroke-width:1px;
    classDef green fill:#00a000,stroke:#000,stroke-width:1px;
graph TD;
    34["true<br>[5+, 5-]"]
    38["Length=3<br>[2+, 0-]"]:::green
    76["Length=4<br>[1+, 3-]"]
    95["Length=5<br>[2+, 2-]"]
    35["Gills=yes<br>[0+, 4-]"]:::red
    62["Gills=no<br>[5+, 1-]"]
    33["Beak=yes<br>[5+, 3-]"]
    52["Beak=no<br>[0+, 2-]"]:::red
    32["Teeth=many<br>[3+, 4-]"]
    45["Teeth=few<br>[2+, 1-]"]

    34 --> 32
    34 --> 33
    34 --> 35
    34 --> 38
    34 --> 45
    34 --> 52
    34 --> 62
    34 --> 76
    34 --> 95

    classDef red fill:#f04030,stroke:#000,stroke-width:1px;
    classDef green fill:#00a000,stroke:#000,stroke-width:1px;