#| echo: false
import matplotlib.pyplot as plt
import numpy as np
c = 1 / 2
pos = c * 100
neg = 100
def entropy(P, N):
if P == 0 or N == 0:
return 0
p = P / (P + N)
n = N / (P + N)
return -p * np.log2(p) - n * np.log2(n)
def gini(P, N):
p = P / (P + N)
n = N / (P + N)
return 2 * p * n
def dkm(P, N):
return np.sqrt(gini(P, N))
def minacc(P, N):
p = P / (P + N)
n = N / (P + N)
return min(p, n)
def metric(tp, fp, m):
if tp + fp == 0:
return 0
Pos = pos
Neg = neg
N = Pos + Neg
TP = tp
FP = fp
FN = Pos - TP
TN = Neg - FP
if m == 'accuracy': return (TP + TN) / N
if m == 'wracc': return TP / N - (TP + FP) * (TP + FN) / N**2
if m == 'confirmation':
A = (TP + FP) * (FP + TN) / N**2
B = FP / N
C = np.sqrt((TP + FP) * (FP + TN) / N**2)
return (A - B) / (C - A)
if m == 'generality': return (TP + FP) / N
if m == 'precision': return TP / (TP + FP)
if m == 'laplace-precision': return (TP + 1) / (TP + FP + 2)
if m == 'f-measure': return 2 * TP / (2 * TP + FP + FN)
if m == 'g-measure': return TP / (FP + Pos)
if m == 'precision*recall': return TP**2 / ((TP + FP) * (TP + FN))
if m == 'avg-precision-recall': return TP / (2 * (TP + FP)) + TP / (2 * (TP + FN))
if m == 'aucsplit': return (TP * Neg + Pos * TN) / (2 * Pos * Neg)
if m == 'balanced-aucsplit': return TP / Pos - FP / Neg
if m == 'chi2':
return (TP * TN - FP * FN)**2 / ((TP + FP) * (TP + FN) * (FP + TN) * (FN + TN))
if m == 'info-gain':
return entropy(Pos, Neg) - (TP + FP) / N * entropy(TP, FP) - (FN + TN) / N * entropy(FN, TN)
if m == 'gini':
return gini(Pos, Neg) - (TP + FP) / N * gini(TP, FP) - (FN + TN) / N * gini(FN, TN)
if m == 'dkm':
return dkm(Pos, Neg) - (TP + FP) / N * dkm(TP, FP) - (FN + TN) / N * dkm(FN, TN)
if m == 'entropy': return entropy(TP, FP) / 2
if m == 'giniimp': return gini(TP, FP)
if m == 'dkmimp': return dkm(TP, FP)
if m == 'minacc': return minacc(TP, FP)
x = np.arange(0, neg + 1)
y = np.arange(0, pos + 1)
X, Y = np.meshgrid(x, y)
def rocgrid():
plt.figure(figsize=(6, 6))
plt.xlim(0, neg)
plt.ylim(0, pos)
plt.xlabel("Negatives")
plt.ylabel("Positives")
plt.xticks([0, neg], ['0', 'Neg'])
plt.yticks([0, pos], ['0', 'Pos'])
plt.gca().set_aspect('auto')
for gx in np.arange(0, neg + 1, 10):
plt.axvline(x=gx, color='gray', linestyle='dotted')
for gy in np.arange(0, pos + 1, 10):
plt.axhline(y=gy, color='gray', linestyle='dotted')
slope = pos / (c * neg)
x_vals = np.array([0, neg])
plt.plot(x_vals, slope * x_vals, linestyle='solid', color='black')
def compute_z(m):
z = np.zeros_like(X, dtype=float)
for i in range(X.shape[0]):
for j in range(X.shape[1]):
z[i, j] = metric(Y[i, j], X[i, j], m)
return z
def contour2(m, col, lty, levels):
Z = compute_z(m)
plt.contour(X, Y, Z, levels=levels, colors=col, linestyles=lty)
p1 = c * 80
n1 = 20
p2 = c * 100
n2 = 60
rocgrid()
values = [0.1, 0.4]
contour2('entropy', 'blue', 'solid', values)
contour2('giniimp', 'violet', 'dashed', values)
contour2('minacc', 'red', 'dashdot', values)
plt.show()